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TESTING AND RECONSTRUCTION OF LIPSCHITZ FUNCTIONS
WITH APPLICATIONS TO DATA PRIVACY∗

MADHAV JHA† AND SOFYA RASKHODNIKOVA†

Abstract. A function f : D → R is Lipschitz if dR(f(x), f(y)) ≤ dD(x, y) for all x, y in D,
where dR and dD denote the distance metrics on the range and domain of f , respectively. We initiate
the study of testing and local reconstruction of the Lipschitz property of functions. A property tester
has to distinguish functions with the property (in this case, Lipschitz) from functions that differ from
every function with the property on many values. A local filter reconstructs a desired property (in this
case, Lipschitz) in the following sense: given an arbitrary function f and a query x, it returns g(x),
where the resulting function g satisfies the property, changing f only when necessary. If f has the
property, g must be equal to f . We design efficient testers and local reconstructors for functions over
domains of the form {1, . . . , n}d, equipped with �1 distance, and give corresponding impossibility
results. The algorithms we design have applications to program analysis and data privacy. The
application to privacy is based on the fact that a function f of entries in a database of sensitive
information can be released with noise of magnitude proportional to a Lipschitz constant of f , while
preserving the privacy of individuals whose data is stored in the database [Dwork et al., Theory of
Cryptography, Lecture Notes in Comput. Sci. 3878, S. Halevi and T. Rabin, eds., Springer, Berlin,
2006, pp. 265–284]. We give a differentially private mechanism, based on local filters, for releasing a
function f when a purported Lipschitz constant of f is provided by a distrusted client.
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1. Introduction. Consider a function f : D → R mapping a metric space
(D, dD) to a metric space (R, dR), where dD and dR denote the distance functions
on the domain D and range R, respectively.1 Function f has Lipschitz constant c
if dR(f(x), f(y)) ≤ c · dD(x, y) for all x, y in D. We call such a function c-Lipschitz
and say a function is Lipschitz if it is 1-Lipschitz. (Note that rescaling by a factor of
1/c converts a c-Lipschitz function into a Lipschitz function.) Intuitively, a Lipschitz
constant of f is a bound on how sensitive f is to small changes in its input.

Lipschitz continuity2 is a fundamental notion in mathematical analysis, the theory
of differential equations, and other areas of mathematics and computer science. A
Lipschitz constant c of a given function f is used, for example, in probability theory
in order to obtain tail bounds via McDiarmid’s inequality [35]; in program analysis,
it is considered as a measure of robustness to noise [17]; in data privacy, it is used to
scale noise added to output f(x) to preserve differential privacy of a database x [22].
In these three examples, one often needs to compute a Lipschitz constant of a given
function f or, at least, verify that f is c-Lipschitz for a given number c. However, in
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1More generally, we allow dD to be a quasimetric, i.e., a function that satisfies all axioms of

a metric, except possibly for symmetry. This generalization is used only in section 3.2, where we
consider the shortest path distance dD on a directed graph. When the graph contains no path from
a node u to a node v, the distance dD(u, v) = ∞.

2A function is called Lipschitz continuous if there is a constant c for which it is c-Lipschitz.
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general, computing a Lipschitz constant is computationally infeasible. The decision
version is undecidable when f is specified by a Turing machine that computes it, and
NP-hard if f is specified by a circuit. In this work, we focus on Lipschitz continuity
of functions over finite domains, for which the NP-hardness statement still holds.

We initiate the study of testing if a function (over a finite domain) is Lipschitz,
which is a relaxation of the decision problem described above. A property tester [45,
27] is given oracle access to an object (in this case, a function f) and a proximity
parameter ε. It has to distinguish functions with the property (in this case, Lipschitz)
from functions that are ε-far from having the property, that is, differ from every
function with the property on at least an ε fraction of the domain. Intuitively, a
tester for the Lipschitz property of functions provides an approximate answer to the
decision problem of determining whether a function is Lipschitz and is useful in some
situations when obtaining an exact answer is computationally infeasible.

We also study local reconstruction of the Lipschitz property of functions over finite
domains. This is useful in applications (in particular, to data privacy) where merely
testing is not sufficient, and one needs to be able to enforce the Lipschitz property.

Property-preserving data reconstruction [3] is beneficial when an algorithm, call
it A, is computing on a large dataset and the algorithm’s correctness is contingent
upon the dataset satisfying a certain structural property. For example, A may require
that its input array be sorted or, in our case, its input function be Lipschitz. In such
situations, A could access its input via a filter that ensures that data seen by A
always satisfy the desired property, modifying it at a few places on the fly, if required.
Suppose that A’s input is represented by a function f . Then whenever A wants to
access f(x), it makes query x to the filter. The filter looks up the value of f on a
small number of points and returns g(x), where g satisfies the desired property (in
our case, is Lipschitz). See Figure 1.1. Thus, A is computing with reconstructed data
g instead of its original input f .

Fig. 1.1. A property reconstructor: g always satisfies property P.

Local reconstruction [46] imposes an additional requirement to allow for parallel
or distributed implementation of filters: the output function g must be independent of
the order of the queries x to the filter. The version of local reconstruction we consider
(see Definition 2.1), defined in [9], further requires that if the original input has the
property, it should not be modified by the filter; i.e., if f has the property, g must be
equal to f . Our application to data privacy has an unusual feature not encountered
in previous applications of filters: algorithm A needs to access its input only at one
point x (corresponding to the database it is holding). Nevertheless, we require local
filters, not because of the distributed aspect they were initially developed for, but
because when g depends on x, it might leak information about x and violate privacy.



702 MADHAV JHA AND SOFYA RASKHODNIKOVA

Previous work on property testing and reconstruction. Property test-
ing [27, 45] is a well-studied notion of approximation for decision problems. Proper-
ties of a wide variety of structures, including graphs, error-correcting codes, geometric
sets, probability distributions, images, and Boolean functions, have been investigated
in this context (see [42, 44] for recent surveys), most of which are not directly related
to the problems we consider here. A notable exception is a line of work on testing
monotonicity of functions [23, 26, 21, 6, 25, 24, 30, 1, 10, 9, 13, 39, 2] which has
provided several techniques that are surprisingly useful for testing the Lipschitz prop-
erty. We discuss this connection between monotonicity and the Lipschitz property in
section 1.1.

Property-preserving reconstruction [3] has been studied for monotonicity of func-
tions [3, 46, 9], convexity of points [19], graph expansion [33], and error-correcting
codes [14]. The local model is addressed in [46, 14, 9], with only [46] providing lo-
cal filters, and the other two papers focusing on lower bounds. Results on filters for
properties other than monotonicity of functions do not seem directly relevant to our
work.

1.1. Our results and techniques. We study testing and local reconstruction
of Lipschitz functions over discrete metric spaces. Standard notions from property
testing and reconstruction are introduced in section 2. Throughout the paper, we use
[n] to denote {1, . . . , n}. We represent each domain by a graph G equipped with the

shortest path distance dG. Specifically, we consider functions over domains {0, 1}d,
[n], and [n]d, equipped with �1 distance. We refer to the domains of our functions
by specifying the underlying graph that captures the distances between points in the
domain. Specifically, {0, 1}d is referred to as the hypercube Hd, [n] as the line Ln,
and [n]d as the hypergrid Hn,d. The hypergrid Hn,d has vertex set [n]d and edge set
{{x, y} : ∃ unique i ∈ [d] such that |yi − xi| = 1 and for j �= i, yj = xj}. The line and
the hypercube are the special cases of the hypergrid for d = 1 and n = 2, respectively,
with vertices of the hypercube renumbered as {0, 1}d instead of {1, 2}d.

Relationship to monotonicity of functions. A function f : G→ R, where G
is a partially ordered set equipped with partial order≺ (equivalently, a directed acyclic
graph) and R is a linear order, is monotone if f(x) ≤ f(y) for all x ≺ y (equivalently,
all edges (x, y) in G). Testing and reconstruction of monotone functions has been
extensively studied, with a particular focus on functions over directed hypergrids

of different sizes and dimensions. In particular, the directed line
−→Ln was studied

in [23, 21, 10, 24], the directed hypercube
−→Hd in [26, 21, 25, 13], and the directed

hypergrid
−→Hn,d in [26, 21, 6, 30, 9, 2, 46], where the directed hypergrids are obtained

from corresponding undirected hypergrids by orienting their edges according to the
standard partial order, ≺, on the hypergrids: for distinct vertices x, y ∈ [n]d, x ≺ y

iff for all i ∈ [d], xi ≤ yi. (Specifically,
−→Hn,d has (x, y) as an edge iff {x, y} is an edge

in Hn,d and x ≺ y.)
A number of techniques from monotonicity literature turned out to be a good

starting point for our investigation of the Lipschitz property. We found this con-
nection between monotonicity and the Lipschitz property surprising because the two
properties are defined in terms of two different-looking conditions: the first is defined
on ordered pairs, the second on unordered pairs; the first is about the order rela-
tionship, and the second is defined in terms of proximity. We did not discover any
reductions between the corresponding testing or reconstruction problems for the two
properties. Nonetheless, in one case—for testing functions on the line—we found a
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formal relationship between the two properties: we show that they are both instances
of a class of properties to which the same techniques apply. We discuss this in more
detail below, in the subsection titled “Testing the Lipschitz property on the line.”

1.1.1. Testing the Lipschitz property. We design efficient testers of the Lip-
schitz property for functions over the hypercube Hd and the line Ln and prove corre-
sponding lower bounds.

Testing the Lipschitz property on the hypercube. The following theorem,
proved in section 3.1, gives a tester for the Lipschitz property of functions of the
form f : Hd → δZ, where δ ∈ (0, 1] and δZ is the set of integer multiples of δ. Its
performance is better when the image space of the function has low diameter.

Definition 1.1 (image diameter). The image diameter of f : D → R, denoted
ImD(f), is maxx,y∈D dR(f(x), f(y)).

Theorem 1.2 (Lipschitz tester for hypercube). The Lipschitz property of
functions f : Hd → δZ can be tested nonadaptively and with one-sided error in

O(d·min{d,ImD(f)}
δε ) time for 3 all δ ∈ (0, 1].

For instance, if the range of f is {0, 1, 2}, then the tester runs in O(d/ε) time.
(Observe that a function over the range {0, 1} is always Lipschitz, so the tester for

this case is trivial.) In general, the running time of our tester is O(d
2

δε ).

The tester first samples random points and checks whether the image of the input
function f , restricted to the samples, has appropriately small diameter for a Lipschitz
function over Hd—namely, at most d. If f passes this test, then it checks whether the
Lipschitz condition is satisfied for uniformly random edges of Hd and rejects if it finds
a violation. To analyze the tester, we relate (in Lemma 3.2) the number of edges of
Hd that are violated by a function to its distance to the Lipschitz property. The main
tool in the analysis is the averaging operator, which we use to restore the Lipschitz
property one dimension at a time.4 The operator modifies values of f on the endpoints
of each violated edge in a given dimension, bringing the two values sufficiently close.
It can be thought of as computing the average of the values on the endpoints and
“rounding” it down and up to values in the range. One of the difficulties we overcome
in the analysis is that the averaging operator might increase the number of violated
edges in the previously restored dimensions. We introduce a potential function, called
a violation score, that takes into account not only the number of violations, but also
their magnitude. We prove that applying the averaging operator along one dimension
does not increase the violation score in other dimensions. One of the main features
of the averaging operator is that its action can be broken down into small steps,

3If δ > 1, then f is Lipschitz iff it is 0-Lipschitz (that is, constant). Testing whether a function
is constant takes O(1/ε) time.

4The main component of our tester—sampling edges uniformly at random and checking for
violations of the property—is very natural and was already used in testing monotonicity of functions
on the hypercube in [26, 21]. Naturally, the authors of these papers also needed to provide a
connection between the number of edges violated by the function and its distance to the property.
For Boolean functions, they did it by showing that swapping 0 and 1 values on the endpoints of
violated edges one dimension at a time repairs the function. This allowed them to bound the distance
of f to a monotone function. The analogous statement for more general functions (in [21]) is proved
by induction on the size of the range. We use the idea of repairing the function one dimension at a
time. But new ideas are needed to make our analysis work. Observe that in the case of the Lipschitz
property, Boolean functions are always Lipschitz, so there is nothing to test. In addition, for the
Lipschitz property, not only the size of the range, but also the distances between points in the range
play a role. Although for monotonicity, repairing a function with a range of size greater than 2 one
dimension at a time does not work, this is exactly what we do here.
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captured by the basic operator which brings the endpoints of violated edges in a given
dimension closer to each other by a small increment δ. This allows us to prove the
desired statement for the basic operator.

In section 3.1, we obtain the following corollary for real-valued functions from
Theorem 1.2 by discretizing their values.

Corollary 1.3. There is a nonadaptive algorithm that gets parameters δ ∈
(0, 1], ε ∈ (0, 1), d and oracle access to a function f : Hd → R; it accepts if f is
Lipschitz, rejects with probability at least 2/3 if f is ε-far from (1 + δ)-Lipschitz, and

runs in O(d·min{d,ImD(f)}
δε ) time.

We also give a lower bound on the query complexity of the tester for the hypercube
which matches the upper bound in Theorem 1.2 for the case of the {0, 1, 2} range,
constant ε, and δ = 1.

Theorem 1.4. Every (possibly adaptive, two-sided error) tester of the Lipschitz
property of functions f : Hd → Z must make Ω(d) queries. This holds even if the
range of f is {0, 1, 2}.

We prove Theorem 1.4 in section 3.1.3 using the method presented by Blais,
Brody, and Matulef [11] of reducing a suitable communication complexity problem to
the testing problem. In [11], this method is used to prove (among other results) an

Ω(d) lower bound for testing monotonicity of functions on {0, 1}d with a range of size
Ω(
√
d). Our lower bound for the Lipschitz property holds even for functions with a

range of size 3.

Testing the Lipschitz property on the line. Next we give an efficient tester
for a class of properties of functions on Gn, where Gn is a directed acyclic graph

on n vertices. This class includes the Lipschitz property on
−→Ln. Observe that the

Lipschitz properties on Ln and on
−→Ln are identical. To see this, note that for all

x, y ∈ [n], such that x < y, the shortest path distance between x and y in Ln is

y − x. For
−→Ln, the shortest path distance from x to y is y − x, and from y to x is

∞. Therefore, both properties can be stated by requiring |f(x) − f(y)| ≤ y − x for
all x, y ∈ [n] such that x < y. We extend the monotonicity tester from [10], based
on 2-transitive-closure spanners (2-TC-spanners, given in Definition 2.5) for functions
f : Gn → R, by abstracting out the requirements on the property which are needed
for the tester and the analysis to work. Our tester works for any property P of a
function f : Gn → R, where R is an arbitrary range, provided that P satisfies the
following requirements:
(a) P can be expressed in terms of conditions on pairs of domain points;
(b) the conditions in (a) are transitive, namely, for all x ≺ y ≺ z in the domain,5

whenever (x, y) and (y, z) satisfy the above conditions, so does (x, z); and
(c) every function that satisfies the above conditions on a subset of the domain can

be extended to a function with the property.
We call a property edge-transitive if it satisfies (a) and (b) and say it allows ex-

tension if it satisfies (c). (See Definition 3.12.) Examples of edge-transitive properties
include the c-Lipschitz property on directed hypergrids and variants of monotonicity.
(See the discussion after Definition 3.12.)

The Lipschitz property for functions on f :
−→Ln → R allows extension for most

ranges R of interest. We characterize such ranges R (in Claim 3.14) as discretely
metrically convex metric spaces. Metric convexity is a standard notion in geometric

5≺ denotes the partial order on the vertices, imposed by the edges of Gn. That is, x ≺ y for
distinct x and y if y is reachable from x in Gn.
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functional analysis (see, e.g., [7]). We define the discrete version, which is a weakening
of the original notion in the following sense: all metrically convex spaces are also
discretely metrically convex.

Definition 1.5 (Definition 1.3 of [7] and its relaxation). A metric space (R, dR)
is metrically convex (respectively, discretely metrically convex) if for all points
u, v ∈ R and positive real numbers (respectively, positive integers) α and β satisfying
dR(u, v) ≤ α+ β, there exists w ∈ R such that dR(u,w) ≤ α and dR(w, v) ≤ β.

The following theorem, proved in section 3.2.1, gives an efficient tester for ev-
ery edge-transitive property that allows extension and, in particular, applies to the

Lipschitz property of functions f :
−→Ln → R, where R is discretely metrically convex.

Theorem 1.6. Let Gn be a directed graph on n nodes, let R be an arbitrary range,
and let P be an edge-transitive property of functions f : Gn → R that allows extension.
If Gn has a 2-TC-spanner with s(n) edges, then P can be tested nonadaptively and

with one-sided error in time O( s(n)εn ).

Recall that the Lipschitz properties on Ln and
−→Ln are identical. We therefore get

the following corollary.

Corollary 1.7. The Lipschitz property of functions f : Ln → R for every
discretely metrically convex space R can be tested in time O

(
logn
ε

)
. In particular, the

bound applies to the following metric spaces R: (Rk, �p) for all p ∈ [1,∞), (Rk, �∞),
(Zk, �1), (Zk, �∞) and the shortest path metric dG on all (unweighted undirected)
graphs G = (V,E).

When the range of f is R and the image diameter ImD(f) is small, the following
theorem, proved in section 3.2.1, gives a faster tester than Corollary 1.7.

Theorem 1.8. The Lipschitz property of functions f : Ln → R can be tested

nonadaptively and with one-sided error in time O
( logmin{n,ImD(f)}

ε

)
.

Our next theorem, proved in section 3.2.2, shows that the upper bound of Theo-
rem 1.8 is tight for nonadaptive one-sided error testers. Even though it is stated for
range [r] for concreteness, as shown in Corollary 3.16 at the end of section 3.2.2, it
applies to all discretely metrically convex spaces which contain two points at distance
r. In particular, this includes all the spaces listed in Corollary 1.7.

Theorem 1.9. Every nonadaptive one-sided error tester of the Lipschitz property
of functions f : Ln → [r] must make Ω(logmin {n, r}) queries.

To prove Theorem 1.9, we construct a family of Ω(logn) functions which are
1/4-far from Lipschitz and have pairwise disjoint sets of violated pairs. Moreover, for
every r ∈ [n] there are Ω(log r) functions in the family with image diameter at most
r. This enables us to prove the lower bound using Yao’s principle. The construction
of functions f in the family has a clean description in terms of the discrete derivative
function Δf , defined by Δf(1) = 0 and Δf(x) = f(x)− f(x− 1) for all x ≥ 2.

1.1.2. Reconstruction of the Lipschitz property. We present a local filter
of the Lipschitz property for functions of the form f : [n]d → R, which runs in time
(O(log n))d. This result is stated in Theorem 1.10, which is proved in section 4.1.

Theorem 1.10 (local Lipschitz filters for hypergrid). There is a deterministic
nonadaptive local Lipschitz filter for functions f : [n]d → R with running time (and
the number of lookups) O((log n+ 1)d) per query.

We abstract the combinatorial object used in this filter as a lookup graph. A
lookup graphH is a directed acyclic graph with the same vertex set as the (undirected)
domain graph G. A lookup graph H is consistent with G if every pair of vertices x
and y in H has a common vertex z reachable from both x and y such that z is a



706 MADHAV JHA AND SOFYA RASKHODNIKOVA

vertex on a shortest path between x and y in G. (A lookup graph is defined formally
in Definition 4.2.) We show that the existence of a lookup graph implies a local
Lipschitz filter where the lookup complexity of the filter is the maximum reachable-
degree of a node in the lookup graph. The reachable-degree of a node in H is the size
of the set of vertices reachable from the node in H . We obtain a lookup graph for [n]
with reachable-degree (of every node in H) bounded by O(log n). Our construction
builds on ideas of Ailon et al. [3] who gave a local monotonicity filter for functions
f : [n] → R. We obtain a lookup graph for the hypergrid Hn,d by constructing a
strong product of the lookup graphs for the line.

For functions of the form {0, 1}d → R, we show that every nonadaptive recon-
structor has lookup complexity exponential in d. The statement and the proof of the
lower bound appear in section 4.2. The main tool in the analysis is transitive-closure
spanners, which were also used in [9] to prove lower bounds on local monotonicity
reconstructors.

1.2. Applications. Our testers have applications to program analysis. Our
filters have applications to data privacy.

Program analysis. Certifying that a program computes a Lipschitz function has
been studied in [17]. Applications described there include ensuring that a program is
robust to noise in its inputs and ensuring that a program responds well to compiler
optimizations that lead to an approximately equivalent program. For example, a
Lipschitz function is guaranteed to respond proportionally to changes in input data
(e.g., sensor measurements) due to rounding or other kinds of errors.

The methodology presented in [17] relies on inspecting the code of the program
to verify that it computes a Lipschitz function. Their method might work for some
program, but might not apply to another functionally equivalent program with more
complicated syntax. Efficient testers of the Lipschitz property allow one to approx-
imately check whether a program computes a Lipschitz function, while treating the
program as a black box, without any syntactical restrictions. (In order to use a pro-
gram as an oracle, we need a guarantee that it terminates. This guarantee is also
required in [17].) The only restriction we impose is on the domain and the range of
the function computed by the program, since our tests are tailored to the domain and
the range. As examples, consider the following three Lipschitz functions: (1) the sum
of the values in a Boolean array; (2) the distance of an undirected graph, represented
by its Boolean adjacency matrix, to the property of being triangle-free; (3) a function
which takes the age of a person and outputs a real vector, where each component is
the probability of catching a given disease at that age (presumably, this vector should
not change much for people whose ages differ by only one year). Our testers apply to
all three cases and can be used to approximately certify that programs that claim to
compute these functions are indeed computing Lipschitz functions.

Data privacy. The challenge in private data analysis is to release global statis-
tics about the database while protecting the privacy of individual contributors. The
database x can be modeled as a multiset (or a vector) over some domain U , where
each element (respectively, entry) xi ∈ U represents information about one individ-
ual. One of the main questions addressed in this area is: what information about x
that does not heavily depend on individual entries xi can we compute (and release)
efficiently? There is a vast body of work on this problem in statistics and computer
science, with Dinur and Nissim [20] pioneering a line of work in cryptography. Dwork
et al. [22] defined a rigorous notion of privacy, called differential privacy (reviewed
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in Definition 5.1), and described mechanisms, based on the global sensitivity (a.k.a.
the Lipschitz constant), that achieve differential privacy for releasing a given function
f of the database x. An example of such a mechanism is the Laplace mechanism,
reviewed in section 5.2. The method is based on adding random noise from a fixed
distribution (e.g., the Laplace distribution) to f(x), where the magnitude of the noise,
i.e., the scale parameter of the distribution, is proportional to a Lipschitz constant of
the function f .

Three major systems that release data while satisfying differential privacy have
been implemented, all based on the Laplace mechanism:6 PINQ [36], Airavat [43],
and Fuzz [29]. All allow releasing functions of the database of the form f : x→ R. In
all implementations, the client sends a program to the server, requesting to evaluate
it on the database, and receives the output of the program with Laplace noise added
to it. However, the client is not trusted to provide a function with a low Lipschitz
constant. The program f can be composed from a limited set of trusted built-in
functions, such as sum and count. In addition, f can use a limited set of (untrusted)
data transformations, such as applying a predicate to each row of the dataset, whose
sensitivity can be enforced or deduced from the declared range of the transformation.
PINQ and Airavat deduce the sensitivity of the overall program at runtime, while Fuzz
checks it statically. The limitation of all three systems is that the functionality of the
program is restricted either by the set of trusted built-in functions available (e.g., in
PINQ and Airavat) or, in the case of Fuzz, the expressivity of the type systems.

The difficulty is that when f (supplied by a distrusted client) is given as a general-
purpose program, it is hard to compute its least Lipschitz constant, or even an upper
bound on it. Suppose we ask the client to supply a constant c such that f is c-Lipschitz.
Unfortunately, as mentioned before, it is undecidable to even verify whether a function
computed by a given Turing machine is c-Lipschitz for a fixed constant c. Applying
the Laplace mechanism with c smaller than a Lipschitz constant (if the client is lying)
would result in a privacy breach, while applying it with a generic upper bound on the
least Lipschitz constant of f would result in overwhelming noise.

In section 5, we describe and analyze a different solution, which we call the filter
mechanism, that can be used to release a function f when a Lipschitz constant of f is
provided by a distrusted client. (See Figure 1.2.) Our mechanism can be instantiated
with any privacy mechanism which is based on global sensitivity. The filter mechanism
is differentially private and adds the same amount of noise for an honest client as the
underlying privacy mechanism. Instead of directly running a program f , provided by
the client, on the database x, the server calls a local Lipschitz filter on query x with f
as an oracle. The filter outputs g(x) instead of f(x), where g is Lipschitz.7 Crucially,
since the filter is local, it guarantees that g does not depend on the database x. That
is, the client could have computed g by herself, based on f . Consequently, releasing
g(x) via the underlying privacy mechanism is differentially private. Moreover, if the
client is honest and provides a program that computes a Lipschitz function f , the
output function g of the filter is identical to f . In this case, the noise added to the

6Since the conference version of this paper was published, another system, GUPT [37], appeared.
Instead of the Laplace mechanism, it is based on Sample and Aggregate [38]. It works for arbitrary
functions f but is guaranteed to give accurate results only when f(x) can be approximated well,
based on random samples from x. Because of this restriction, this approach is incomparable to ours.

7If one needs to ensure that a function is c-Lipschitz, the function can be rescaled.
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Fig. 1.2. Use of a Lipschitz filter in private data analysis.

answer is identical to that of the underlying privacy mechanism.8

Theorem 1.11 (filter mechanism). Let M be a privacy mechanism (e.g., the
Laplace mechanism) whose inputs are a secret database x ∈ D, a positive constant c,
and a database query function f : D → R, where c and f are supplied by a distrusted
client. Suppose whenever f is c-Lipschitz, M is private (e.g., differentially private).
Let F be any local Lipschitz filter satisfying Definition 2.1. The filter mechanism
M ′ is identical to M , except that it uses g(x) = c · F (f/c, x) instead of f(x) in all
computations of M involving f(x).

The filter mechanism satisfies the following:

1. The mechanism M ′ has the same privacy guarantee for the case when f and
c are arbitrary as M has for the case when f is c-Lipschitz.

2. For honest clients, M ′ has the same error as M with probability 1− δ, where
δ is the error probability of F .

3. The increase in the running time of M ′ over M is bounded by the running
time of F on input f and query x.

Theorem 1.11 is proved in section 5.1. We review the Laplace mechanism in
section 5.2. In section 5.3, we instantiate the filter mechanism with the Laplace
mechanism and our filter from Theorem 1.10 to obtain an efficient private algorithm
for releasing real-valued functions f of the databases x.

Recall that the database x is modeled as a multiset (or a vector) over some domain
U , where each element (respectively, entry) xi ∈ U represents information about one
individual. Our instantiation of the filter mechanism can be used when an upper
bound on the multiplicity of all elements in the database is publicly known. (Note
that the number of people in databases is a trivial upper bound.) When the client
provides a correct Lipschitz constant, the resulting filter mechanism has the same
expected error as the Laplace mechanism. Our mechanism is differentially private
even for dishonest clients.

We show that when no reliable Lipschitz constant of f is given, previously known

8The definition of local filters we use (Definition 2.1), unlike the original one proposed by Saks
and Seshadhri [46], does not require that f and g differ only on a small number of points. This
requirement is unnecessary for the privacy application because the filter mechanism calls our filter
only on one database x. If we added this requirement, a dishonest client would be penalized for fewer
instances of x. Observe that the error that a filter introduces by substituting f(x) with g(x) does
not depend on the distance of f to the Lipschitz property: it could be Lipschitz everywhere, besides
x, but f(x) would be changed anyway. However, it is not hard to see that our filter never changes
f(x) by more than maxy {|f(y) − f(x)|+ dG(x, y)} .
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differentially private mechanisms (specifically, those based on the Laplace mechanism)
either have a substantially higher running time (because they verify the Lipschitz
constant by brute force) or have a higher expected error for a large class of functions
f . Specifically, suppose that U has size k, that is, the individuals can have one of
k types, and consider functions f that compute the number of individuals of types
S ⊆ [k] for |S| = Ω(k). We show that the noisy histogram approach (based on the
Laplace mechanism) incurs an expected Ω(

√
k/ε) error in answering the query. In

contrast, our filter mechanism has expected error O(1/ε) while preserving differential
privacy even in the presence of distrusted clients. The following theorem, proved in
section 5.3, summarizes the comparison of the filter mechanism to the noisy histogram
approach.

Theorem 1.12. There exist functions f such that releasing f results in expected
error Ω(

√
k/ε) with the noisy histogram approach, but only O(1/ε) with the filter

mechanism.

2. Preliminaries. In this section, we establish notation and review known re-
sults on property testing, local property reconstruction, Lipschitz functions, and
transitive-closure spanners.

Property testing. Property testing is concerned with the problem of approxi-
mately establishing whether certain objects have a desired property or are very “far”
from it. We focus on properties of functions over finite domains. Let U denote the
set of all functions on a domain D. A property P is a subset of U . For example, the
Lipschitz property is the set of Lipschitz functions on D. Given a function f ∈ U , we
say f satisfies P if f ∈ P . Given functions f, g ∈ U , the distance between f and g,
denoted Dist(f, g), is the number of points in the domain on which f and g differ.
The relative distance between f and g is Dist(f, g)/|D|. The distance of a function f
from a property P , denoted Dist(f,P), is ming∈P Dist(g, f). Similarly, the relative
distance of f from P , denoted εP(f), is Dist(f,P)/|D|. We say f is ε-far from P if its
relative distance from P is at least ε. A (two-sided error, adaptive) q-query tester for
a property P is a randomized algorithm, which given parameter ε ∈ (0, 1) and oracle
access to a function f makes at most q queries to the oracle f and can distinguish,
with probability 2/3, the case that f satisfies P from the case that f is ε-far from P . A
tester has one-sided error if it always accepts functions satisfying P . It is nonadaptive
if the queries to f do not depend on the answers to the previous queries.

Local property reconstruction. In this paper we consider local reconstruction
of the Lipschitz property. The model of local reconstruction was defined in [46], and
the variant we consider was given in [9].

Definition 2.1 (local filter). A local filter for reconstructing property P is an
algorithm A that has oracle access to a function f : D → R and to an auxiliary
random string ρ (the “random seed”) and takes as input x ∈ D. For fixed f and ρ,
A runs deterministically on input x to produce an output Af,ρ(x) ∈ R. (Note that a
local filter has no internal state for storing previously made queries.) The function
g(x) = Af,ρ(x) output by the filter must satisfy P for all f and ρ. In addition, if f
satisfies P, then g must be identical to f with probability at least 1− δ for some error
probability δ ≤ 1/3, where the probability is taken over ρ.

When answering a query x ∈ D, a filter may access values of f at domain points of
its choice using its oracle. Each accessed domain point is called a lookup to distinguish
it from the client query x. A local filter is nonadaptive if its lookups on input query
x do not depend on answers given by the oracle.
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In [46], the authors also require that g is sufficiently close to f : with high prob-
ability (over the choice of ρ), Dist(g, f) ≤ B(n) ·Dist(f,P), where B(n) is a slowly
growing function. We use the variant of this definition, considered in [9], that does
not have this requirement. (See footnote 8.)

Facts about Lipschitz functions. If f is not Lipschitz, then for some pair
(x, y) ∈ D×D, the Lipschitz condition is violated, namely, dR(f(x), f(y)) > dD(x, y).
Such a pair is called violated.

Definition 2.2. A function f : D → R is Lipschitz on D′ ⊆ D if there are no
violated pairs in D′ ×D′.

We note the following standard fact about extending partial Lipschitz functions.
Fact 2.3 (Lemma 1.1 of [7]). Consider a function f : D → R

k between metric
spaces (D, dD) and (Rk, �∞). If f is Lipschitz on D′ ⊆ D, one can make f Lipschitz
(on the entire domain) by modifying it only on D \D′.

In this work, we focus on functions over discrete domains which can be represented
by a (usually undirected) graph G equipped with the shortest path metric dG(·, ·).
We say that an edge (x, y) in G is violated if (x, y) is a violated pair. Observe that a
function f : G → R, that maps vertices of G to R, is Lipschitz iff dR(f(x), f(y)) ≤
dG(x, y) for all edges (x, y) in G. Given this observation, it is easy to see that a
function f : G → R defined on the vertices of a directed graph G is Lipschitz iff it is
Lipschitz with respect to the underlying undirected graph. (However, this artificial
introduction of directions gives properties which, in general, do not allow extension;
see Definition 3.12 and the discussion following it.)

When we talk about properties defined on (acyclic) directed graphs, we identify
their vertices with elements of the corresponding partial order.

Definition 2.4 (comparable and incomparable elements). Let G be a set equipped
with a partial order ≺. Elements a, b ∈ G are comparable if a � b or b � a. Other-
wise, a and b are incomparable.

Transitive-closure spanners. Recall that the transitive closure of a graph G =
(V,E) is a directed graph TC(G) on the vertex set V such that there is an edge (x, y)
in TC(G) iff there is a directed path from x to y in G. Transitive-closure spanners
(see [40] for a survey on the topic) are used in sections 3.2.1 and 4.2.

Definition 2.5 (k-TC-spanner [10]). Given a directed graph G = (V,E) and an
integer k ≥ 1, a k-transitive-closure spanner (k-TC-spanner) of G is a directed graph
H = (V,EH) such that (a) EH is a subset of the edges in the transitive closure of G;
(b) for all vertices x, y ∈ V , if dG(x, y) <∞, then dH(x, y) ≤ k.

Directed hypergrids were defined in section 1.1. The following bounds from [8, 9]
on the size of 2-TC-spanners of these graphs are used in section 4.2 to prove lower
bounds for local Lipschitz filters.

Lemma 2.6. A 2-TC-spanner of
−→Hn,d has Ω

(nd(lnn−1)d

(4π)d

)
edges [8]. A 2-TC-

spanner of
−→Hd has Ω(2cd) edges, where c ≈ 1.1620 [9].

3. Property testers.

3.1. Hypercube: Testing whether a function on Hd is Lipschitz. In this
section, first we show how to test whether a function f : Hd → δZ is Lipschitz,
and prove Theorem 1.2. Then we derive Corollary 1.3 on (a relaxation of) testing
whether a function f : Hd → R is Lipschitz. At the end (in section 3.1.3), we prove
Theorem 1.4, which gives a lower bound on the query complexity of a Lipschitz tester
on the hypercube.
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When designing a tester of the Lipschitz property of functions f : Hd → δZ, we
may assume w.l.o.g. that 1/δ is an integer. (This assumption is valid, more generally,
when the domain is an undirected unweighted graph.) To see this, let g : Hd → Z

be the function f/δ. Observe that g is 1/δ-Lipschitz iff for every edge {x, y} in Hd,
the following holds: |g(x) − g(y)| ≤ 1/δ. Since g is an integer-valued function, the
latter condition holds iff |g(x)− g(y)| ≤ �1/δ�. Thus, g is 1/δ-Lipschitz iff g is �1/δ�-
Lipschitz.9 By rescaling, we get that f is Lipschitz iff g/�1/δ� is Lipschitz. Let
c = �1/δ� and f ′ = f/(δ · c). Then f is Lipschitz iff f ′ is Lipschitz. Therefore, testing
whether f : Hd → δZ is Lipschitz is equivalent to testing whether f ′ : Hd → (1/c)Z
is Lipschitz for the integer c defined above.

Recall that a function is Lipschitz if its values on the endpoints of every edge
differ by at most 1. Since Hd has diameter d, no values in the image of a Lipschitz
function should differ by more than d.

Definition 3.1 (diameter). The diameter of a metric space (D, dD), denoted
diam(D), is the maximum distance between any two points in D, i.e., maxx,y∈D dD(x, y).
The image diameter of a function f : D → R, denoted ImD(f), is the difference be-
tween the maximum and the minimum values attained by f , i.e., maxx∈D f(x) −
minx∈D f(x).

The main tool in the analysis of our test is the following lemma, proved in sec-
tion 3.1.1.

Lemma 3.2 (main lemma). Let function f : {0, 1}d → δZ be ε-far from Lip-
schitz. Let V (f) denote the number of edges of Hd violated by f . Then V (f) ≥
δε · 2d−1/ImD(f).

Lemma 3.2 immediately yields a tester that works when (an upper bound on) the
image diameter of function f is known. The following lemma, proved in section 3.1.2,
shows that knowing the image diameter is not necessary.

Lemma 3.3 (Lipschitz tester oblivious to the image diameter). Consider the
Lipschitz property of functions f : D → R, where R ⊆ R. Suppose a one-sided error
nonadaptive algorithm that knows an upper bound r on the image diameter ImD(f)
of the input function can test this property in time T (ε, r). Then this property can be
tested nonadaptively and with one-sided error in time

2 · T (ε/2,min {diam(D), ImD(f)}) +O(1/ε)

with no knowledge of an upper bound on ImD(f).
Proof of Theorem 1.2. In light of Lemma 3.3, it is sufficient to give a tester which

knows an upper bound r on the image diameter of function f . The tester selects
s = �2dr/δε� edges uniformly and independently at random from the hypercube
Hd. If any of the selected edges {x, y} is violated, i.e., |f(x) − f(y)| > 1, it rejects;
otherwise, it accepts.

The tester accepts all Lipschitz functions. Since the number of edges in the d-
dimensional hypercube is 2d−1d, Lemma 3.2 implies that functions which are ε-far
from Lipschitz are rejected with probability at least 2/3. The theorem (including the
claim about the running time) then follows from Lemma 3.3.

Next we prove the corollary on a relaxation of testing if a function f : Hd → R

is Lipschitz. We start by defining the rounding operators used in the proof of the
corollary and later in section 3.1.1.

9This does not hold for general domains. For example, consider the set S = {(0, 0), (0, 1), (1, 1)} ⊆
R2, and let function f : S → Z be defined as follows: f((0, 0)) = 0, f((0, 1)) = 1 and f((1, 1)) = 2.
Then, with respect to the �2-metric on the domain, f is

√
2-Lipschitz but not �√2	-Lipschitz.



712 MADHAV JHA AND SOFYA RASKHODNIKOVA

Definition 3.4 (operators � �δ and � �δ). Let �x�δ denote the largest value in
δZ not greater than x. Similarly, let �x�δ denote the smallest value in δZ not smaller
than x.

Proof of Corollary 1.3. Let δ′ = δ/2 and f ′ : Hd → δ′Z be the function defined

by f ′(x) = �f(x)�δ′ for all x ∈ {0, 1}d. Then f(x) − δ′ ≤ f ′(x) ≤ f(x) for all

x ∈ {0, 1}d. If f is Lipschitz, then f ′ is (1 + δ′)-Lipschitz because |f ′(x) − f ′(y)| ≤
|f(x) − f(y)| + δ′ ≤ 1 + δ′ for each edge {x, y} of the hypercube Hd. Next we show
that when f is ε-far from (1 + 2δ′)-Lipschitz, then f ′ is ε-far from (1 + δ′)-Lipschitz.
Suppose to the contrary that f ′ is (1+δ′)-Lipschitz on a set S ⊆ {0, 1}d of size greater
than (1 − ε)2d. (See Definition 2.2 and Fact 2.3.) Since f ′(x) ≤ f(x) ≤ f ′(x) + δ′,
function f is (1 + 2δ′)-Lipschitz on S, a contradiction.

Thus, we can use the Lipschitz tester of Theorem 1.2 with inputs f ′/(1+δ′), d, δ′/
(1 + δ′) and ε to distinguish Lipschitz f from f that is ε-far from (1 + δ)-Lipschitz,
proving the corollary.

3.1.1. Averaging operator Ai. This section is devoted to Lemma 3.2, the
main tool in the analysis of the tester of the Lipschitz property on the hypercube. To
prove Lemma 3.2, we show how to transform an arbitrary function f : {0, 1}d → δZ
into a Lipschitz function by changing f on a set of points, whose size is related to
the number of the hypercube edges violated by f . This is achieved by repairing one
dimension of the hypercube Hd at a time with the averaging operator Ai, defined
below. The operator modifies values of f on the endpoints of each violated edge
in dimension i, bringing the two values sufficiently close. It can be thought of as
computing the average of the values on the endpoints and rounding it down and up
to (almost) closest values in δZ to obtain new assignments for the endpoints. For
the special case when δ = 1, the rounding is in fact to the closest integer values:
for every edge {x, y} along dimension i such that f(x) < f(y) − 1, we can define

Ai[f ](x) = � f(x)+f(y)
2 � and Ai[f ](y) = � f(x)+f(y)

2 �.
The definition ofAi for general δ is based on repeatedly applying the basic operator

Bi, defined next. (This definition is equivalent to what we stated for δ = 1, but does
not directly generalize it.)

Definition 3.5 (basic operator Bi). Given f : {0, 1}d → δZ, for each violated
edge {x, y} along dimension i, where vertex names x and y are chosen so that f(x) <
f(y)− 1, define Bi[f ](x) = f(x) + δ and Bi[f ](y) = f(y)− δ.

Now we define the averaging operator Ai.
Definition 3.6 (averaging operator Ai). Given f : {0, 1}d → δZ, the averaging

operator Ai applies Bi to the input function f multiple times until no edge along
dimension i is violated.

We can give another definition of the averaging operator, using the rounding
operators from Definition 3.4. The new definition is equivalent to Definition 3.6,
provided that 1/δ is an integer. (As discussed in the beginning of section 3.1, we can
assume 1/δ is an integer.) We give the second definition to present an alternative
view of the operator, but do not actually use it in our arguments. Consequently, we
omit the proof that the two definitions are equivalent.

Definition 3.7 (averaging operatorAi, equivalent definition). Given f : {0, 1}d →
δZ, for each violated edge {x, y} along dimension i, where vertex names x and y are
chosen so that f(x) < f(y)− 1, define

Ai[f ](x) =

⌈
f(x) + f(y)

2
− 1

2

⌉
δ

and Ai[f ](y) =

⌊
f(x) + f(y)

2
+

1

2

⌋
δ

.
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We would like to argue that while we are repairing dimension i with the aver-
aging operator, other dimensions are not getting worse. Unfortunately, the number
of violated edges along other dimensions can increase. Instead, we keep track of our
progress by looking at a different measure, called the violation score.

Definition 3.8 (violation score). The violation score of an edge {x, y} with
respect to function f , denoted vs({x, y}), is max(0, |f(x)− f(y)| − 1). The violation
score of dimension i, denoted V Si(f), is the sum of violation scores of all edges along
dimension i.

Observe that the violation score of an edge is positive iff the edge is violated.
Moreover, the violation score of a violated edge with respect to a δZ-valued function
is contained in the interval [δ, ImD(f)]. Let V i(f) be the number of edges along
dimension i violated by f . Then

δV i(f) ≤ V Si(f) ≤ V i(f) · ImD(f).(3.1)

Later, we use (3.1) to bound the number of values of f modified by Ai in terms
of V i(f). The next lemma shows that Ai does not increase the violation score in
dimensions other than i.

Lemma 3.9. For all i, j ∈ [d], where i �= j, and every function f : {0, 1}d → δZ,
applying the averaging operator Ai does not increase the violation score in dimension
j, i.e., V Sj(Ai[f ]) ≤ V Sj(f).

Proof. Given Definition 3.6, in which the averaging operator is viewed as multiple
applications of the basic operator, it suffices to prove Lemma 3.9 for Bi instead of Ai.

Note that the edges along dimensions i and j form disjoint squares in the hy-
percube. Therefore, the special case of Lemma 3.9 for f restricted to each of these
squares individually (where each such restriction is a two-dimensional function) allows
us to prove the lemma for dimensions i and j by summing the inequalities over all
such squares. It remains to prove the lemma for d = 2 and Bi instead of Ai. In this
proof, we use the fact that 1/δ is integral, discussed in the beginning of section 3.1.

yt

ybxb

xt

i

j

Consider a two-dimensional function f : {xt, xb, yt, yb} → δZ with vertices xt, xb,
yt, yb positioned as depicted above. We show that an application of the basic oper-
ator Bi along the horizontal dimension does not increase the violation score of the
vertical dimension. If the violation scores of the vertical edges do not increase, the
proof is complete. Assume w.l.o.g. that the violation score of the left vertical edge
{xt, xb} increases. Also w.l.o.g. assume Bi[f ](xt) > Bi[f ](xb) (otherwise, we can
swap the horizontal edges on our picture). Then Bi increases f(xt) and/or decreases
f(xb). Assume w.l.o.g. that Bi increases f(xt). (The case when Bi decreases f(xb)
is symmetrical.) Then {xt, yt} is violated with f(xt) < f(yt). Moreover, since f is a
δZ-valued function and 1/δ is an integer, f(yt) ≥ f(xt) + 1 + δ. The application of
the basic operator increases f(xt) by δ and decreases f(yt) by δ.

If the bottom edge is not violated, then f(xb) ≥ f(yb)− 1 and the basic operator
does not change f(xb) and f(yb). Since vs({xt, xb}) increases, f(xt) > f(xb) + 1− δ.
Integrality of 1/δ implies f(xt) ≥ f(xb)+ 1. Combining the three inequalities derived
so far, we get f(yt) ≥ f(xt)+1+ δ ≥ f(xb)+2+ δ ≥ f(yb)+1+ δ. Thus, vs({xt, xb})
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increases by δ, while vs({yt, yb}) decreases by δ, keeping the violation score along the
vertical dimension unchanged.

If the bottom edge is violated, then, since vs({xt, xb}) increases and 1/δ is inte-
gral, f(xt) ≥ f(xb) + 1 − δ. Also, f(xb) must decrease, implying f(xb) > f(yb) + 1.
Therefore, f(yt) ≥ f(xt) + 1 + δ ≥ f(xb) + 2 > f(yb) + 3. Recall that δ ≤ 1. Thus,
vs({xt, xb}) increases by at most 2δ, while vs({yt, yb}) decreases by 2δ, ensuring that
the violation score along the vertical dimension does not increase.

Proof of Lemma 3.2. The crux of the proof is showing how to make a function
f : {0, 1}d → δZ Lipschitz by redefining it on at most 2

δ · V (f) · ImD(f) points. We
apply a sequence of averaging operators as follows: we define f0 = f , and for all
i ∈ [d], we let fi = Ai[fi−1]. That is,

f = f0
A1−−→ f1

A2−−→ f2 −→ · · · −→ fd−1
Ad−−→ fd.

We claim that fd is Lipschitz. By the definition of the averaging operator Ai, each
step above makes one dimension i free of violated edges. Recall that the violation
score V Si is 0 iff dimension i has no violated edges. Therefore, by Lemma 3.9, Ai

preserves the Lipschitz property along dimensions fixed in the previous steps. Thus,
eventually there are no violated edges, and fd is Lipschitz.

Now we bound the number of points on which f and fd differ, that is, Dist(f, fd).
For all i ∈ [d],

Dist(fi−1, fi) = Dist(fi−1, Ai[fi−1]) ≤ 2 · V i(fi−1) ≤ 2

δ
· V Si(fi−1) ≤ 2

δ
· V Si(f)

≤ 2

δ
· V i(f) · ImD(f).(3.2)

The first inequality holds because Ai modifies f only on the endpoints of violated
edges along dimension i. The second and fourth inequalities follow from (3.1). The
third inequality holds because, by Lemma 3.9, the operators Aj for j �= i do not
increase the violation score in dimension i. The distance from f to fd is

Dist(f, fd) ≤
∑
i∈[d]

Dist(fi−1, fi) ≤
∑
i∈[d]

2

δ
· V i(f) · ImD(f)(3.3)

=
2

δ
· V (f) · ImD(f).(3.4)

The two inequalities above follow from the triangle inequality and (3.2), respectively.
Consider a function f which is ε-far from the Lipschitz property. Since fd is

Lipschitz, Dist(f, fd) ≥ ε · 2d. Together with (3.3), it gives V (f) ≥ εδ · 2d−1/ImD(f),
as required.

3.1.2. Analyzing the image diameter of a sample. In this section, we prove
Lemma 3.3, which is used in the proofs of Theorems 1.2 and 1.8. First, we give an
algorithm for estimating the image diameter of a real-valued function. This is an
important ingredient in the proof of Lemma 3.3.

Claim 3.10. There is an algorithm that, given a function f : D → R and
ε ∈ (0, 1], outputs r ∈ R such that r ≤ ImD(f), and with probability ≥ 3

4 the function
f is ε-close to having image diameter at most r. Moreover, the algorithm runs in
O(1/ε) time.

Proof. We present Algorithm 1 (called Sample-Diameter) and prove that it
satisfies the requirements of Claim 3.10.
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Algorithm 1. Sample-Diameter(f : D → R, ε)

1: Let s = �5/ε�.
2: Select samples z = z1, . . . , zs from D uniformly and independently at random.
3: Return r = maxsi=1 f(zi)−mins

i=1 f(zi).

Sample-Diameter always returns a number r no larger than ImD(f). It remains
to show that with probability ≥ 3

4 , output r is such that the function f is ε-close to
having image diameter at most r. To do that, sort the points in the domain D of
the input function f in nondecreasing order according to their f -values. Let L be
the first (respectively, let R be the last) �ε · |D|/2� points in the sorted list. Define
x1 = argmaxx∈L f(x) and x2 = argminx∈R f(x). Let E1 (respectively, E2) denote
the event that the sampled sequence z contains no element of L (respectively, R).
Observe that if z contains an element of L and an element of R, that is, E1 ∪E2

holds, then f is ε-close to having diameter at most r. This is because by redefining f
only on points in (L∪R)\ {x1, x2} whose f -values are smaller or larger than f -values
on all the samples, we get a function with image diameter at most r. The probability
that it fails to happen is

Pr(E1 ∪ E2) ≤ 2 · Pr(E1) ≤ 2 ·
(
1− ε

2

)� 5ε � ≤ 2 · (e− ε
2

) 5
ε ≤ 1

4
.

The first inequality above uses the union bound and symmetry. The second inequality
holds since |L|/|D| ≥ ε

2 . The rest is standard.
Proof of Lemma 3.3. The required tester is Algorithm 2.

Algorithm 2. Test(f : D → R, ε)

1: Let r ← Sample-Diameter(f, ε/2). If r > diam(D), reject.
2: Let A(f, ε, r) be the Lipschitz tester as in Lemma 3.3. Namely, it gets oracle

access to function f : D → R and receives a parameter r (in addition to ε) such
that r ≥ ImD(f).

3: Run A(f, ε/2, r) twice and accept if both runs of the algorithm accept; otherwise,
reject.

Algorithm 2 always accepts a Lipschitz function. Consider a function f which is ε-
far from the Lipschitz property. Let E be the event that the output r of the procedure
Sample-Diameter is such that the function f is ε/2-far from having image diameter
r. By Claim 3.10, Pr[E] ≤ 1/4. If r > diam(D), then the tester correctly rejects on
line 1 because, by Claim 3.10, r ≤ ImD(f), and a Lipschitz function on D must have
image diameter at most diam(D).

It remains to consider the case when r ≤ diam(D). Conditioned on E not hap-
pening (denoted E), there is a function h with ImD(h) ≤ r such that dist(f, h) < ε/2,
where dist(f, h) denotes the fraction of points on which f and h differ. In the follow-
ing, assume E does not occur. Let amin = minx∈D h(x) and amax = maxx∈D h(x).
Consider a function g, obtained from f as follows:

g(x) =

⎧⎪⎨
⎪⎩
amin if f(x) < amin,

amax if f(x) > amax,

f(x) otherwise.
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Then ImD(g) ≤ r and dist(f, g) < ε/2. By the triangle inequality, the relative distance
from g to the Lipschitz property is εlip(g) ≥ εlip(f) − ε/2 ≥ ε/2. Since g has image
diameter at most r and is ε/2-far from Lipschitz, Pr[A(g, ε/2, r) rejects] ≥ 2/3.

We claim that Pr[A(f, ε/2, r) rejects] ≥ Pr[A(g, ε/2, r) rejects]. This is because,
by construction of g, every pair violated by g is also violated by f . Since a non-
adaptive 1-sided error tester rejects iff it queries a violated pair (x, y), we get that
Pr[A(f, ε/2, r) rejects] ≥ Pr[A(g, ε/2, r) rejects] ≥ 2/3.

Since we run algorithm A twice and accept only if both runs accept, we have
Pr[step 3 rejects f | Ē] ≥ 1− (1/3)2 = 8/9. Therefore,

Pr[step 3 rejects f ] ≥ Pr[step 3 rejects | Ē] · Pr[Ē] ≥ 8

9
· 3
4
=

2

3
.

Finally, observe that the running time is O(1/ε) if Sample-Diameter returns
r > diam(D). Otherwise, it is 2 · T (ε/2, r), where T (ε/2, r) is the running time of
A(f, ε/2, r) and r ≤ min {diam(D), ImD(f)}. This completes the proof of Lemma
3.3.

3.1.3. Lower bound on the Lipschitz tester for the hypercube. In this
section, we prove Theorem 1.4, which gives a lower bound on the query complexity of
an (adaptive, two-sided error) Lipschitz tester for the hypercube. The proof uses the
method presented in [11] of reducing a suitable communication complexity problem
to the testing problem.

Proof of Theorem 1.4. Consider the following communication game between Alice
and Bob in the public randomness model, where the players generate messages based
on random bits they both see. Alice has an input A ⊆ [d], Bob has an input B ⊆ [d],
and they would like to compute the set-disjointness function DISJd(A,B), which is
1 if A ∩ B = ∅ and 0 otherwise. It is well known [34, 5, 41] that R(DISJd), the
minimum number of bits Alice and Bob must communicate for them both to compute
DISJd(A,B) with probability at least 2/3 on any input pair (A,B), is Ω(d).

Alice and Bob can reduce the problem of computing DISJd to testing the Lip-
schitz property as follows. Note that a set S ⊆ [d] is uniquely determined by the

parity function χS : {0, 1}d → {−1, 1} given by χS(x) = −1
∑

i∈S xi . Alice forms the
function f = χA and Bob forms the function g = χB. Claim 3.11 shows that the joint
function h = (f + g)/2 is Lipschitz if the sets do not intersect, and is 1/4-far from
Lipschitz otherwise. Thus, the players can determine whether their sets intersect by
both running the same tester for the Lipschitz property on h. Whenever Alice’s tester
queries h(x), she sends f(x) to Bob, and whenever Bob’s tester queries h(x), he sends
g(x) to Alice. Both use the received message to compute h(x).

Let q(d) be the query complexity of testing the Lipschitz property of functions of

the form h : {0, 1}d → {−1, 0, 1}. If the players run an optimal tester, they exchange
2q(d) messages of one bit each. That is, R(DISJd) ≤ 2q(d). The claimed bound then
follows from the Ω(d) bound on R(DISJd).

The following claim was used in the proof of Theorem 1.4.
Claim 3.11. Given subsets A,B ⊆ [d], let h : {0, 1}d → {−1, 0, 1} be the function

defined by h(x) = (χA(x)+χB(x))/2. Then h is Lipschitz if A∩B = ∅, and is 1/4-far
from Lipschitz otherwise.

Proof. Consider an arbitrary dimension j ∈ [d] and fix an arbitrary edge {x, y}
along dimension j such that xj = 0 and yj = 1. One may verify that for any subset
S ⊆ [d], χS(x) − χS(y) = 2 · χS(x) · |S ∩ {j} |. This implies that |h(x) − h(y)| ≤
|A ∩ {j} |+ |B ∩ {j} |. Therefore, if A and B are disjoint, |h(x) − h(y)| ≤ 1 for each



TESTING AND RECONSTRUCTION OF LIPSCHITZ FUNCTIONS 717

edge {x, y} of the hypercube (thus implying h is Lipschitz). Now suppose A and
B intersect, and consider some j ∈ A ∩ B. Now, for any edge {x, y} as above,
|h(x) − h(y)| = |χA(x) + χB(x)|. This is equal to 2 whenever χA(x) = χB(x),

which holds for at least half of the vertices x ∈ {0, 1}d with xj = 0. Moreover,
the corresponding violated edges {x, y} form a matching. Therefore, in this case the
function h is 1/4-far from Lipschitz.

3.2. Line graph: Testing whether a function on Ln is Lipschitz.

3.2.1. Testing edge-transitive properties that allow extension. In this
section, we prove Theorem 1.6, Corollary 1.7, and Theorem 1.8. We start by giving
the definition and examples of edge-transitive properties that allow extension. Recall
the definition of comparable and incomparable elements (Definition 2.4).

Definition 3.12. Let G be a directed graph and R be an arbitrary range. A
property P of functions f : G→ R is edge-transitive if the following conditions hold:

1. It can be expressed in terms of requirements on pairs of comparable domain
points, i.e., f ∈ P iff f satisfies given requirements on f(x), f(y) for all
comparable vertices x, y in G. A pair (x, y) is called violated (by f) if the
corresponding requirement on f(x), f(y) is not satisfied.

2. For all vertices x ≺ y ≺ z in G, whenever (x, y) and (y, z) are not violated,
neither is (x, z).

An edge-transitive property P allows extension if every partial function, which is de-
fined on a subset D′ of the domain and violates no pairs in D′ ×D′, can be extended
to a function f ∈ P over the entire domain.

Examples of edge-transitive properties include the c-Lipschitz property of func-
tions over hypergrids and variants of monotonicity. Recall that the c-Lipschitz prop-
erty was defined in terms of pairs of domain elements. Specifically, a pair (x, y) is
violated if dR(f(x), f(y)) > c · dG(x, y). If (x, y) and (y, z) are not violated, then, by
the triangle inequality,

dR(f(x), f(z)) ≤ dR(f(x), f(y))+dR(f(y), f(z)) ≤ c·dG(x, y)+c·dG(y, z) = c·dG(x, z),

and, consequently, (x, z) is not violated. (The last equality uses the fact that G is a
hypergrid.) Therefore, the c-Lipschitz property is edge-transitive. Another example of
an edge-transitive property is monotonicity, which is defined by f ∈ P if f(x) ≤ f(y)
for all x ≺ y. Edge-transitive variants of monotonicity include strict monotonicity,
where the requirements are f(x) < f(y) for all x ≺ y, and c-monotonicity of functions
over hypergrid graphs G, where the requirements are f(x) ≤ cdG(x,y) · f(y) for all
x ≺ y.

While extendability is rarely an issue for variants of monotonicity, it is the reason
that the tester in this section is not applicable for the Lipschitz property of functions

on other domains of interest, such as the hypercube
−→Hd and the hypergrid

−→Hn,d.
Monotonicity, strict monotonicity, and c-monotonicity of functions over hypergrids
allow extension when the range of functions is R. When the range is Z, monotonic-
ity and c-monotonicity of functions over hypergrids still allow extension, but strict
monotonicity, the way we defined it above, does not. However, it allows extension if
the requirements are replaced by f(x) ≤ f(y) + dG(x, y) for all x ≺ y. Therefore,
the tester of this section applies to all these monotonicity variants with the ranges
we mentioned. For the Lipschitz property, the situation is fundamentally different. If
the (directed) domain graph contains two incomparable vertices x and y, which are
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connected in the underlying undirected graph, then the Lipschitz property of func-
tions over this domain does not allow extension. To see this, fix such x and y and
denote the distance from x to y in the underlying undirected graph by d. If we set
f(x) = 0 and f(y) = d + 1, there is no way to assign values of f on other vertices
to ensure that f is Lipschitz, even though the current partial assignment violates no
requirement on comparable vertices. Note that while the Lipschitz property of func-
tions on undirected graphs allows extension, say, for range R, it is not edge-transitive

in the sense of Definition 3.12. Fortunately, when the domain of functions is
−→Ln, for

many ranges of interest, such as R
k, equipped with �1, �2, or �∞, Zk, equipped with

�1 or �∞, and the shortest path metric dG on all unweighted graphs G, the Lipschitz
property allows extension. We characterize ranges R for which the Lipschitz property
of functions f : [n]→ R allows extension in Claim 3.14.

Next we prove Theorem 1.6 which gives a tester for every edge-transitive property
of functions f : Gn → R that allows extension, where Gn is a directed acyclic graph
and R is an arbitrary range. It extends the monotonicity tester from [10] for functions
f : Gn → R, based on 2-TC-spanners (see Definition 2.5).

Proof of Theorem 1.6. Let H = (V,E) be a 2-TC-spanner of Gn with s(n) edges.
The following tester works for all edge-transitive properties P that allow extension.
It selects �4s(n)/(εn)� edges uniformly and independently from H and queries f on
their endpoints. The tester rejects if some selected edge (x, y) is violated by f with
respect to P , and accepts otherwise.

This tester always accepts a function f ∈ P . Consider the case when f is ε-
far from P . Let V1 ⊆ V be the set of endpoints of edges in H violated by f , and
V2 = V \V1. We claim that no pairs (x, y) ∈ V2×V2 are violated. To see this, consider
such a pair with x ≺ y. Since H is a 2-TC-spanner of Gn, it contains edges (x, z) and
(z, y), where x � z � y. Edges (x, z) and (z, y) are not violated because x, y ∈ V2.
Since f is edge-transitive, (x, y) is also not violated. Therefore, f violates no pairs in
V2 × V2. Since P allows extension and f is ε-far from P , it implies that |V1| ≥ εn.
Since each violated edge in H contributes at most two distinct endpoints to V1, the
number of violated edges is at least εn/2. Consequently, a uniformly selected edge in
H is violated with probability at least εn/(2s(n)) because H has at most s(n) edges.
Since the test samples �4s(n)/(εn)� edges uniformly and independently, it finds a
violated edge and, therefore, rejects with probability at least 2/3, as required.

Next we prove Corollary 1.7 that gives a tester for the Lipschitz property of
functions f : Ln → R for every discretely metrically convex space R.

Poof of Corollary 1.7. Since the Lipschitz properties on Ln and
−→Ln are identical,

we prove the statement for the latter. A sparse 2-TC-spanner of the directed line
−→L n

with at most n logn edges can be constructed greedily. This construction appeared
implicitly or explicitly as a special case of more general constructions in [48, 16, 15,
4, 18, 12, 47, 21]. It is surveyed as a stand-alone construction in [40]. We review
this construction here, since it is used later, in the proof of Theorem 1.8. The edge
set of the 2-TC-spanner is constructed recursively. In the construction, the middle
node vmid = �n/2� is used as a hub: namely, we add edges (v, vmid) for all nodes
v < vmid and edges (vmid, v) for all nodes v > vmid. The construction then proceeds
by recursively repeating the above procedure on the two line segments resulting from
removing vmid from the current line until each line segment contains exactly one node.

Since the Lipschitz property is edge-transitive and, by Claim 3.14, allows exten-
sion whenever R is discretely metrically convex, Theorem 1.6 implies the first part
of the corollary. Then the second part, with the examples of spaces R, follows from
Claim 3.15.
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The strengthening of Corollary 1.7 to Theorem 1.8 for the case of range R and
small image diameter is presented next. The improvement for this case stems from
two observations. First, a function f with small image diameter cannot violate the
Lipschitz condition on distant pairs of points. Second, for the real range, we can
quickly estimate the image diameter from a small number of samples, as we already
proved in Claim 3.10.

Proof of Theorem 1.8. We begin by proving the following claim.
Claim 3.13. Let function f : [n] → R be ε-far from Lipschitz. Let H = ([n], E)

be the 2-TC-spanner of the line graph constructed in the proof of Corollary 1.7. Let
E′ be the subset of E consisting of edges (x, y) satisfying |x− y| < ImD(f). Then the
fraction of edges in E′ violated by f is at least ε

10 logmin{ImD(f),n} .
Proof. From the proof of Theorem 1.6, we know that H has at least εn/2 violated

edges. All these violated edges are contained in E′, since every edge (x, y) with
|x − y| ≥ ImD(f) must satisfy |f(x) − f(y)| ≤ ImD(f) ≤ |x − y|. Thus, E′ has at
least εn/2 violated edges.

It remains to show that |E′| ≤ 5n log r, where r = min {ImD(f), n}. We say an
edge (x, y) ∈ E is of length j if |x− y| = j. There are at most logn recursive steps in
the construction of the 2-TC-spanner in the proof of Corollary 1.7. In the ith step,
there are 2i−1 hubs, and at most 2r edges of length up to r per hub are added. Thus,
in the first �log(n/r)� steps, at most 2r · 2�log(n/r)� ≤ 2r · 2n/r = 4n edges are added
to E′. In each of the remaining at most logn− log(n/r) = log r recursive steps, each
node connects to at most one hub; that is, at most n edges are added to E′. Overall,
|E′| ≤ 4n+ n log r ≤ 5n log r.

We first give a tester which works when the image diameter of f is known. The
tester selects s = �6 logmin {ImD(f), n} /ε� edges uniformly and independently at
random from the set E′ defined in Claim 3.13. If any of the selected edges {x, y} are
violated, i.e., |f(x) − f(y)| > 1, it rejects; otherwise, it accepts. The tester accepts
all Lipschitz functions. By Claim 3.13, functions which are ε-far from Lipschitz are
rejected with probability at least 2/3. This tester, together with Lemma 3.3, implies
the tester in the statement of Theorem 1.8, that works without the knowledge of
ImD(f).

We finish this section by proving two claims used in the proof of Corollary 1.7.
Claim 3.14 characterizes ranges R for which the Lipschitz property of functions f :
[n]→ R allows extension. Claim 3.15 gives examples of such ranges.

Claim 3.14. Metric space (R, dR) is discretely metrically convex iff for every
D′ ⊆ [n], every Lipschitz function f : D′ → R can be extended to a Lipschitz function
on the entire domain [n].

Proof. First, assume that (R, dR) is discretely metrically convex. Fix an arbitrary
x ∈ [n] \D′. We show how to extend f to x such that the extension is still Lipschitz.
Let � (respectively, r) be the D′-vertex closest to x on the left (respectively, right). If
either � or r does not exist, set f(x) to the value of f at the other vertex. Otherwise,
set f(x) to some w ∈ R satisfying dR(f(�), w) ≤ x−� and dR(w, f(r)) ≤ r−x. Such a
point w exists because R is discretely metrically convex and dR(f(�), f(r)) ≤ r− � =
(r − x) + (x− �).

It remains to prove that the extended f is Lipschitz. For that, it is sufficient
to show that it is Lipschitz on S = {�, x, r} (that is, there are no violated pairs in
S × S; see Definition 2.2) because for every y ∈ D′, one of � or r lies on the shortest
path between x and y. If one of � or r does not exist, f is trivially Lipschitz on
S. Otherwise, the definition of f(x) guarantees that dR(f(x), f(�)) ≤ x − � and
dR(f(x), f(�)) ≤ r − x, implying that f is Lipschitz on S.
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For the other direction, assume that every R-valued partial function on [n] which
is Lipschitz (with respect to dR) can be extended to a Lipschitz function on the entire
domain. We show that R is discretely metrically convex. Fix u, v ∈ R satisfying
dR(u, v) ≤ α + β for positive integers α and β. Now, consider a partial function
f : [α+ β+1]→ R such that f(1) = u and f(α+ β+1) = v. Since dR(u, v) ≤ α+ β,
f is Lipschitz on the set {1, α+ β + 1}. By our assumption, the partial function can
be extended to a Lipschitz function f̃ on the entire domain. Now, w = f̃(α) ∈ R
satisfies dR(u,w) ≤ α and dR(w, v) ≤ β because f̃ is Lipschitz.

Claim 3.15 (examples of discretely metrically convex metric spaces). The fol-
lowing metric spaces are discretely metrically convex: (Rk, �p) for all p ∈ [1,∞),
(Rk, �∞), (Zk, �1), (Zk, �∞), and the shortest path metric dG on all (unweighted)
graphs G = (V,E).

Proof. For a point u ∈ R
k and p ∈ [1,∞), let ||u||p =

(∑
i∈[k] |ui|p

)1/p
denote

the �p-norm of u. The �p-metric on R
k is defined by d�p(u,v) = ||u − v||p. Given

elements u,v ∈ R
k and positive real numbers α and β satisfying ||u− v||p ≤ α + β,

let w = αv+βu
α+β . Then d�p(u,w) ≤ α and d�p(w,v) ≤ β. This shows that (Rk, �p) for

p ∈ [1,∞) is metrically convex. Fact 2.3 and Claim 3.14 imply metric convexity of
(Rk, �∞). Recall that metric convexity implies discrete metric convexity.

We also observe that the shortest path metric dG on an (unweighted) graph
G = (V,E) is discretely metrically convex. Specifically, suppose u, v ∈ V satisfy
dG(u, v) ≤ α + β for positive integers α and β. If α ≥ dG(u, v), then trivially w = v
satisfies dG(u,w) ≤ α and dG(w, v) ≤ β. Otherwise, let w be the vertex at distance α
from u on a shortest path between u and v. Such a vertex exists because α < dG(u, v).
Then dG(u,w) + dG(w, v) = dG(u, v) ≤ α + β implies dG(w, v) ≤ β. Thus, w is the
required vertex. In particular, Zk equipped with the �1-metric (which can be viewed
as a k-dimensional hypergrid) is discretely metrically convex.

Finally, (Zk, �∞) is discretely metrically convex because in each coordinate, (Z, �∞)
is discretely metrically convex. This holds because the �1-metric and �∞-metric are
identical on Z. Specifically, suppose u,v ∈ Z

k and ‖u − v‖∞ ≤ α + β for positive
integers α and β. Then, by the definition of �∞, we have maxj∈[k] |uj − vj | ≤ α+ β.
Therefore, |uj − vj | ≤ α + β for each j ∈ [k]. Since (Z, �1) is discretely metrically
convex, for each j ∈ [k] there exists wj ∈ Z such that |uj−wj | ≤ α and |wj−vj | ≤ β.
Define w by wj = wj . Then ‖u−w‖∞ = maxj∈[k] |uj −wj | ≤ maxj∈[k] α ≤ α. Simi-

larly, ‖w−v‖∞ ≤ β, thus proving that (Zk, �∞) is discretely metrically convex.

3.2.2. Lower bound on nonadaptive one-sided error Lipschitz tester for
the line. In this section, we prove Theorem 1.9.

Proof of Theorem 1.9. Recall that a function is Lipschitz on a set D′ ⊆ [n] if
it violates no pairs in D′ ×D′. (See Definition 2.2.) Observe that a one-sided error
tester must accept if the input function is Lipschitz on the query points because, by
Fact 2.3, every such function can be extended to a Lipschitz function. To prove our
lower bound, we use Yao’s principle. Namely, we define a distribution N on input
functions f : [n]→ [r], which are 1/4-far from Lipschitz, and show that for every fixed
query set Q ⊂ [n] of size o(logmin {n, r}), a function f drawn from N is Lipschitz on
Q with probability more than 1/3.

Fix positive integers n, r ≥ 8. Assume n = 2�. (We justify this assumption at the
end of the proof.) For every i ∈ [�− 2], we will give a function fi : [n]→ [2i+1] which
is 1/4-far from Lipschitz. Let t = �log(min {n, r})� − 2. Distribution N is uniform
over functions in Ft = {fi : i ∈ [t]}. Observe that every function in Ft has image
diameter at most 2t+1 ≤ r.
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Fig. 3.1. The discrete derivative function, Δfi.

Fix i ∈ [� − 2]. We describe the function fi by giving its discrete derivative
function Δfi : [n] → N, defined by Δf(1) = 0 and Δf(x) = f(x) − f(x − 1) for all
x ≥ 2. The value f(x) for all x ∈ [n] can be computed from the values of Δf(x) as
follows: fi(x) = 1 +

∑
y∈[x]Δfi(y). The range of Δfi is Σ = {−2,−1, 0, 1, 2}. To

define Δfi, consider the string σ over the alphabet Σ defined by

σ = (0 12
i−2 1 2 12

i−2 0 0 (−1)2i−2
(−1) (−2) 12

i−2 0)2
�−i−2

,

where exponentiation denotes repetition, namely, ab means a repeated b times. Then
σ is of length 2� = n. Given x ∈ [n], we define Δfi(x) = σ[x]. (Figure 3.1 depicts
Δfi(x) when n = 32 and i = 2.)

Now we show that the resulting functions fi are 1/4-far from Lipschitz. Let Pi

denote the partition of [n] into intervals of size 2i. Namely, Pi consists of intervals
Iij = [1 + (j − 1)2i, j2i] for all j ∈ [n/2i]. Let Li

j = (1 + (j − 1)2i, j2i] and Ri
j =

[1 + (j − 1)2i, j2i) denote the half-open intervals corresponding to Iij . Observe that

for each odd j, all pairs (x, y) ∈ Li
j ×Ri

j+1 are violated by fi. Therefore, to make fi
Lipschitz, we have to redefine it on all points in Li

j or on all points in Ri
j+1, that is,

on at least 1/4 of points in Iij ∪ Iij+1. Thus, fi is 1/4-far from Lipschitz.
Observe that for all i and all x, y ∈ [n] such that x < y, the pair (x, y) is violated

by fi iff x ∈ Li
j and y ∈ Ri

j+1 for some odd j. That is, each such pair (x, y) is violated
by at most one function fi.

Let a1 < · · · < aq be the queries in some fixed set Q ⊂ [n]. A function f is
Lipschitz on Q iff (as, as+1) is not violated for all s ∈ [q − 1]. When f is chosen from
N , Pr[f violates (as, as+1)] ≤ 1/|Ft| for each s ∈ [q − 1]. By the union bound,

Pr[f is not Lipschitz on Q] ≤
∑

s∈[q−1]

Pr[f violates (as, as+1)] ≤ (q − 1)/|Ft|.

When q ≤ 2t/3, this is less than 2/3. That is, every deterministic one-sided error
nonadaptive test with q queries fails with probability greater than 1/3 on an input
function drawn from N . This completes the proof for the case when n is a power of
2.

If n is not a power of 2, let � = �logn�. For every i ∈ [�−2], let f̃i be the function
on [n] which is identical to fi on every x ∈ [2�]. Moreover, for x ≥ �logn�+ 1, f̃i(x)
is defined to be fi(2

�). Since f̃i and fi agree on at least 1/2 of the domain points,
every f̃i is 1/8-far from Lipschitz. Also f̃i has the same image diameter as fi. Then
all the arguments presented in the proof above still hold once we replace fi with f̃i
and “1/4-far” with “1/8-far.”

Next we generalize Theorem 1.9 to all discretely metrically convex spaces.
Corollary 3.16. Let r ∈ N. Consider a discretely metrically convex space R

that contains two points at distance r. Every nonadaptive one-sided error tester of
the Lipschitz property of functions f : Ln → R must make Ω(logmin {n, r}) queries.

The corollary follows from the following claim that states that the line Lr (used
as the range space in Theorem 1.9) can be embedded into R without distortion if R
is as stated in Corollary 3.16.
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Claim 3.17. Let r ∈ N. Consider a discretely metrically convex space R that
contains two points, u1 and ur, at distance r. Then R contains points u2, . . . , ur−1

such that dR(ui, ui+1) = 1 for all i ∈ [r − 1]. (In other words, Lr can be embedded
into R with no distortion by mapping i to ui for all i ∈ [r].)

Proof. Let u1 and ur be two points in R at distance r. The proof is by induction
on r. The base case, when r = 2, holds trivially. For the inductive case, assume r > 2
and suppose the claim holds for r′ = r−1. Since R is discretely metrically convex, by
definition, there exists a point ur−1 such that dR(u1, ur−1) ≤ r′ and dR(ur−1, ur) ≤ 1.
These inequalities are tight since otherwise, by triangle inequality, dR(u1, ur) would
be less than r. Applying the induction hypothesis to the pair of points u1 and ur−1,
we get the desired claim.

4. Local reconstruction of the Lipschitz property.

4.1. Constructions of local filters for the Lipschitz property. In this sec-
tion, we prove Theorems 1.10, giving local filters of the Lipschitz property for functions
f : Ln → R and f : Hn,d → R. Our filters are deterministic and nonadaptive. We
abstract the combinatorial object used in these filters as a lookup graph. We start by
defining lookup graphs in Definition 4.2. In Lemma 4.3, we show how to use them to
construct Lipschitz filters. Finally, we construct lookup graphs for the line and the
hypergrid in Lemma 4.5. Lemmas 4.3 and 4.5 imply Theorem 1.10.

Definition 4.1. Consider a directed acyclic graph H = (V,EH) and a node
x ∈ V . Let NH(x) be the set {y ∈ V | (x, y) ∈ EH} of out-neighbors of x in H. Let
RH(x) be the set of nodes (other than x) reachable from x in H. Also, let N ∗

H(x) =
NH(x) ∪ {x} and R∗

H(x) = RH(x) ∪ {x}. (We omit the subscript H when the graph
is clear from the context.) We denote the maximum outdegree of a node in H by
out-deg(H). Finally, reach-deg(H) = maxx∈V (H) |RH(x)|.

Definition 4.2 (lookup graph). Given an undirected graph G = (V,E), a lookup
graph of G is a directed acyclic graph (DAG) H = (V,EH) satisfying the following
properties:

• Consistency (of sets RH(x)): for all x, y ∈ V , some z ∈ R∗
H(x) ∩R∗

H(y)
is on a shortest path between x and y in G.
• Proxy (sets NH(x) are proxies for sets RH(x)): for all x ∈ V and y ∈
RH(x), some z ∈ NH(x) is on a shortest path between x and y in G.

Lemma 4.3 (lookup graph implies local Lipschitz filter). If a graph G has a
lookup graph H, then there is a nonadaptive local Lipschitz filter for real-valued func-
tions on G with lookup complexity reach-deg(H) and running time O(reach-deg(H) ·
out-deg(H)).

Proof. We describe a local filter which receives a lookup graph H and f : V (H)→
R as inputs. We assume that the filter has access to the domain graph G and that
distances in G can be computed in constant time. Recall that a function is Lipschitz
on a set D′ ⊆ V (G) if it violates no pairs in D′ ×D′. (See Definition 2.2.)

We proceed to prove correctness of the filter. The recursion on line 3 terminates

Algorithm 3. FilterH(f, x).

1: If N (x) is empty, output g(x) = f(x).
2: For each vertex z in N (x), recursively compute g(z) = FilterH(f, z).
3: If setting g(x) = f(x) makes g Lipschitz on N ∗(x), output g(x) = f(x).
4: Otherwise, output g(x) = maxz∈N (x)(g(z)− dG(x, z)).
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becauseH is acyclic. Function g returned by the filter is identical to the input function
f , provided that f is Lipschtiz.

We now prove a simple claim used to show that function g is Lipschitz.

Claim 4.4. If function f is Lipschitz on R∗(x) and on R∗(y), it is also Lipschitz
on {x, y}.

Proof. Let z ∈ R∗(x) ∩R∗(y) be a vertex which lies on a shortest path between
x and y in G (guaranteed to exist by the consistency property of H). From the
statement of the claim, f is Lipschitz on {x, z} and {y, z}. Since z lies on a shortest
path between x and y in G, function f is Lipschitz on {x, y}.

To show that function g returned by Algorithm 3 is Lipschitz, it is sufficient,
by Claim 4.4, to prove that for each x ∈ V , function g is Lipschitz on R∗(x). The
proof is by strong induction on |R(x)|. The base case (when |R(x)| = 0) holds for
trivial reasons. For the inductive case, let |R(x)| = k > 0. Since each z ∈ R(x)
has |R(z)| < k, the induction hypothesis gives us that g is Lipschitz on R∗(z) for
all z ∈ R(x). Then Claim 4.4 implies that g is Lipschitz on R(x). Lines 3 and 4
in Algorithm 3 ensure that g is Lipschitz on N ∗(x). By the proxy property of H ,
function g is then Lipschitz on R∗(x), as required.

On query x, the filter only looks up nodes reachable from x. Therefore, the
lookup complexity of the filter is at most reach-deg(H). Moreover, if for all nodes
x, the filter stores the value of g(x) the first time it is computed and reuses it later,
the running time is O(reach-deg(H) · out-deg(H)). This is because the number of
recursive calls to the filter is at most reach-deg(H) and the time spent on each call is
O(out-deg(H)).

Lemma 4.5 (lookup graph constructions). The line graph Ln has a lookup graph
H with out-deg(H) = 2 and reach-deg(H) = O(log n). The hypergrid Hn,d has a
lookup graph H with out-deg(H) = 3d and reach-deg(H) = (O(log n))d.

Proof. To construct a lookup graphH for the line Ln, consider a balanced (rooted)
binary search tree T on the set [n]. Each element x of [n] can be viewed as a node of
T and as an integer. Let �a(x) be the largest ancestor of x in T which is smaller than
x. Analogously, let ra(x) be the smallest ancestor of x which is larger than x. For
every x ∈ [n], add the edge (x, �a(x)) to H if �a(x) exists and add the edge (x, ra(x))
to H if ra(x) exists.

The resulting graph H is a DAG because all its edges go from nodes to their
ancestors. Next we show that H satisfies the consistency and the proxy properties
of Definition 4.2. Observe that for each node x other than the root, either �a(x) or
ra(x) is the parent of x in T , so in H each x has an outgoing edge to its parent.
Therefore, the set RH(x) is the set of all ancestors of x in T . Recall that the lowest
common ancestor (LCA) of vertices x, y in T is a common ancestor of x and y which
is furthest from the root. For all distinct x, y ∈ [n], the vertex LCA(x, y) is reachable
from both x and y in H and, by the binary search tree property, lies on the shortest
path between x and y in Ln, that is, x ≤ LCA(x, y) ≤ y. Thus, H satisfies the
consistency property. To see that it also satisfies the proxy property, consider x ∈ [n]
and y ∈ R(x). Then y is an ancestor of x in T . If y < x, then y < �a(x) ≤ x; if
x < y, then x < ra(x) ≤ y. In either case, some out-neighbor of x is on the shortest
path between x and y in Ln. This verifies that H is a lookup graph of Ln.

By construction, out-deg(H) = 2. Since the binary search tree T is balanced,
each vertex has O(log n) ancestors. Hence, reach-deg(H) = O(log n).

To construct a lookup graph for Hn,d, we use the fact that Hn,d is the Cartesian
product of d line graphs Ln. Claim 4.9 shows that the strong product (Definition 4.7)
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of lookup graphs is a lookup graph of the Cartesian product graph. We first define
the Cartesian and strong graph products.

Definition 4.6 (Cartesian graph product). Given graphs G1 = (V1, E1) and
G2 = (V2, E2), the Cartesian graph product, denoted by G1 × G2, is a graph with
the vertex set V1 × V2. It contains an edge from (x1, x2) to (y1, y2) iff x1 = y1 and
(x2, y2) ∈ E2, or (x1, y1) ∈ E1 and x2 = y2.

Definition 4.7 (strong product). Given directed graphs G1 = (V1, E1) and
G2 = (V2, E2), the strong product of G1 and G2, denoted G1�G2, is a graph with the
vertex set V1 × V2 and the edge set

{((x1, x2), (y1, y2)) | (x1, x2) ∈ V1 × V2,

(y1, y2) ∈ N ∗
G1

(x1)×N ∗
G2

(x2), and

(x1, x2) �= (y1, y2)}.

We use the following fact about shortest paths in Cartesian graph products to
prove Claim 4.9.

Fact 4.8. Let G = G1×G2 be the Cartesian graph product of G1 = (V1, E1) and
G2 = (V2, E2). For each i ∈ {1, 2}, consider vertices xi, yi, zi ∈ Vi, where zi lies on
a shortest path between xi and yi in Gi. Then vertex (z1, z2) lies on a shortest path
between (x1, x2) and (y1, y2) in G.

Claim 4.9. Let G1 and G2 be undirected graphs with lookup graphs H1 and H2,
respectively. Then the strong product H = H1�H2 is a lookup graph of G = G1 ×
G2. Moreover, out-deg(H) ≤ (out-deg(H1) + 1)(out-deg(H2) + 1) and reach-deg(H) ≤
(reach-deg(H1) + 1)(reach-deg(H2) + 1).

Proof. The strong product of two DAGs is a DAG. Next we prove that H satisfies
the two properties of Definition 4.2. Given vertices (x1, x2), (y1, y2) of G, let z1 ∈
R∗

H1
(x1) ∩ R∗

H1
(y1) be a vertex on a shortest path between x1 and y1 in G1, whose

existence is guaranteed by the consistency property of H1. Define z2 analogously.
Since H = H1�H2, vertex (z1, z2) is in both R∗

H((x1, x2)) and R∗
H((y1, y2)). By

Fact 4.8, (z1, z2) lies on a shortest path between (x1, x2) and (y1, y2) in G. This
proves the consistency property of H .

To prove the proxy property, consider a vertex x = (x1, x2) in G and a vertex y =
(y1, y2) in RH(x). Observe that RH(x) = R∗

H1
(x1)×R∗

H2
(x2)\{x}. If y1 ∈ RH1 (x1),

let z1 ∈ NH1(x1) be a vertex on a shortest path between x1 and y1 in G1, whose
existence is guaranteed by the consistency property of H1. Otherwise (if x1 = y1),
let z1 = x1. Define z2 analogously. Then (z1, z2) is in NH((x1, x2)) and, by Fact 4.8,
it also lies on a shortest path between (x1, x2) and (y1, y2). This proves the proxy
property.

The claimed bounds on out-deg(H) and reach-deg(H) follow from the fact that
N ∗

H(x) = N ∗
H1

(x1) × N ∗
H2

(x2) and R∗
H(x) = R∗

H1
(x1) × R∗

H2
(x2) for all nodes x =

(x1, x2) of H .

Let Hn be the lookup graph for the line Ln constructed earlier. The lookup
graph H for Hn,d is simply �d

i=1Hn = Hn�Hn� · · ·�Hn, i.e., the strong product
of Hn with itself taken d − 1 times. A simple induction and Claim 4.9 establish the
desired properties of H . This completes the proof of Lemma 4.5.

Theorem 1.10 follows from Lemmas 4.3 and 4.5.

4.2. Lower bounds on local Lipschitz filters. In this section, we state and
prove lower bounds on Lipschitz filters on the hypergrid graph, Hn,d.
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Theorem 4.10. Consider a nonadaptive local Lipschitz filter with constant error

probability δ. If the filter is for functions f : Hn,d → R, it must perform Ω( (lnn−1)d−1

d(4π)d )

lookups per query. If the filter is for functions f : Hd → R, it must perform Ω(2αd/d)
lookups per query, where α ≈ 0.1620.

Lemma 4.11 shows that a nonadaptive local Lipschitz filter for Hn,d with low
lookup complexity gives a sparse 2-TC-spanner of the hypergrid. Together with the
lower bounds on the size of 2-TC-spanners of the hypergrid and hypercube stated in
Lemma 2.6, it implies Theorem 4.10.

Lemma 4.11. A nonadaptive local Lipschitz filter on Hn,d with lookup complexity

� implies a 2-TC-spanner of
−→Hn,d with at most nd� · �4d logn/ log(1/2δ)� edges.

Proof. Let G = (V,E) be the hypergrid Hn,d. Consider the directed hypergrid−→Hn,d on the same vertex set. Let F = {x, y ∈ V : x ≺ y}. (The partial order ≺ is
defined in Definition 2.4.) Given (x, y) ∈ F , let cube(x, y) = {z ∈ V : x � z � y}.
Now, for a fixed (x, y) ∈ F , we define two functions f1 and f2 on V :

f1(z) = dG(x, z),

f2(z) =

{
dG(x, z) for z /∈ cube(x, y),

dG(x, z) + 1 for z ∈ cube(x, y).

It is clear that f1 is Lipschitz on G, and we prove shortly that f2 is also Lipschitz on
G.

Let A be a filter as in the statement of the lemma, and let Aρ be filter A run with
the random seed fixed to ρ. Call a random seed ρ good for (x, y) ∈ F if filter Aρ on
input f1 outputs g = f1 and on input f2 outputs g = f2, where f1 and f2 are functions
defined above with respect to (x, y). By the union bound, a random seed is good for a
given pair (x, y) with probability at least 1−2δ. We claim that there exists a (small) set
S of random seeds used by the filter such that for every (x, y) ∈ F , some string in S is
good for (x, y). To show this, we use a probabilistic argument from [9]. Specifically, let
S be a set of s = �2 log |F|/ log (1/2δ)� strings chosen uniformly and independently
from the set of random seeds used by A. Since strings in S are chosen uniformly
and independently, for any fixed (x, y), Pr[no string in S is good for (x, y)] ≤ (2δ)s <
1/|F|. An application of the union bound proves the claim about S. Since |F| ≤ |V |2,
we get s ≤ �4d logn/ log(1/2δ)�.

Given x ∈ V , let Lρ(x) be the set of lookups made by filter Aρ on query x. We
construct a 2-TC-spanner of G as follows: for each ρ ∈ S and each x ∈ V , we add
an edge between x and each comparable u ∈ Lρ(x) and orient the edges according

to
−→Hn,d. (Comparable vertices are defined in Definition 2.4.) We claim this gives a

2-TC-spanner of G. To get a contradiction, assume otherwise. That is, there exists
(x, y) ∈ F with no path of length at most 2 in the constructed graph. This can
happen only if Lρ(x) ∩ Lρ(y) ∩ cube(x, y) = ∅. Define functions f1 and f2 with
respect to (x, y) as above, and let ρ ∈ S be the random seed which is good for (x, y).
Define f3 such that f3(z) = f1(z) if z ∈ Lρ(x) while f3(z) = f2(z) if z ∈ Lρ(y).
On the remaining points define f3 arbitrarily. Function f3 is well defined because
of the assumption that Lρ(x) and Lρ(y) do not intersect in cube(x, y) and the fact
that f1 and f2 are identical outside the set cube(x, y). The definition of f3 implies
Aρ(f3, x) = 0 and Aρ(f3, y) = dG(x, y) + 1. This is because ρ is good for (x, y), and
the view of the filter on query x (respectively, y) is identical to the same view when
the input is the Lipschitz function f1 (respectively, f2). But this means that the filter
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outputs a function which violates the pair (x, y) and hence is not Lipschitz. This is a
contradiction.

In the proof above, we claimed that function f2 is Lipschitz. We prove this
next. Consider any pair of vertices z1, z2 ∈ V . It is clear that f2 may violate the pair
{z1, z2} only if one of the vertices is inside cube(x, y) and the other outside. Therefore,
assume z1 ∈ cube(x, y) and z2 /∈ cube(x, y). This implies f2(z1) = dG(x, z1) + 1
and f2(z2) = dG(x, z2). This immediately gives f(z2) − f(z1) ≤ dG(z1, z2) using
the triangle inequality. It remains to show that f(z2) − f(z1) ≥ −dG(z1, z2), that
is, dG(x, z2) − dG(x, z1) − 1 ≥ −dG(z1, z2). An important observation is that for
x, y ∈ V , x ≺ y, a vertex z lies on a shortest path between x and y iff z ∈ cube(x, y).
Since z2 /∈ cube(x, y), we get dG(x, z2) + dG(z2, y) ≥ dG(x, y) + 1. Using the fact
that z1 ∈ cube(x, y) and therefore dG(x, y) = dG(x, z1)+ dG(z1, y), the last inequality
simplifies to dG(x, z2)+dG(z2, y) ≥ dG(x, z1)+dG(z1, y)+1. Rearranging and applying
the triangle inequality, we get

dG(x, z2)− dG(x, z1)− 1 ≥ dG(z1, y)− dG(z2, y) ≥ −dG(z1, z2),
as required.

The number of edges in H is at most∑
x∈V,ρ∈S

|Lρ(x)| ≤ nd · � · s ≤ nd� · �4d logn/ log(1/2δ)�.

Remark 4.12. The only fact about the hypergrid Hn,d = (V,E) used in the proof
of Lemma 4.11 is the following: For x, y ∈ V , x ≺ y, a vertex z lies on a shortest
path between x and y iff z ∈ cube(x, y). The proof holds for any graph satisfying this
property.

5. Application to data privacy. In section 5.1, we analyze the performance
of the filter mechanism, proving Theorem 1.11. In section 5.2, we review differential
privacy and the Laplace mechanism from [22]. In section 5.3, we instantiate the filter
mechanism with the Laplace mechanism and the filter from Theorem 1.10 to obtain a
private and efficient algorithm for releasing functions f of the data when a Lipschitz
constant of the function is provided by a distrusted client.

5.1. Filter mechanism. Here we prove Theorem 1.11, stated in section 1.2,
which summarizes the performance of the filter mechanism.

Proof of Theorem 1.11. Let x be the input database and gρ be the output function
of the local Lipschitz filter F with input function f/c and random seed fixed to ρ.
Since the filter is local, gρ is well defined on D. In particular, this means that gρ
can be computed by the user without the knowledge of x and therefore does not
disclose anything about the database x. Moreover, gρ is guaranteed to be 1-Lipschitz
and, therefore, c · gρ is c-Lipschitz. The filter mechanism M ′ can thus be seen as an
application of the mechanism M on the c-Lipschitz function c · gρ. Therefore, M ′ has
the same privacy guarantees as M . Since ρ was arbitrary, this analysis holds for any
choice of ρ, i.e., any instantiation of the filter F .

For the second part of the theorem, note that if f is c-Lipschitz, the function that
filter F gets as an input oracle, 1

c · f , is Lipschitz. Therefore, the output function of
the filter is identical to its input function with probability at least 1 − δ. Since the
output of the filter is scaled by c, the second part of the theorem follows.

The final part about the running time of the mechanism follows from the definition
of the filter mechanism.



TESTING AND RECONSTRUCTION OF LIPSCHITZ FUNCTIONS 727

5.2. Review of the Laplace mechanism. There are several ways to model a
database. It can be represented as a vector or a multiset where each component (or
element) represents an individual’s data and takes values in some fixed universe U .
In the latter case, equivalently, it can be represented by a histogram, i.e., a vector
where the ith component represents the number of times the ith element of U occurs
in the database. (Such a representation is considered, e.g., in [31].) Two databases
x and y are neighbors if they differ in one individual’s data. For example, if x and y
are histograms, they are neighbors if they differ by 1 in exactly one component.

The results of this section apply to all of these models. Let D denote the set of
all databases x. The notion of neighboring databases induces a metric dD on D such
that dD(x, y) = 1 iff x and y are neighbors.

Definition 5.1 (differential privacy [22]). Fix ε > 0. A randomized algorithm A
is ε-differentially private if for all neighbors x, y ∈ D, and for all subsets S of outputs,
Pr[A(x) ∈ S] ≤ eε Pr[A(y) ∈ S].

Recall that Lap(λ) denotes the Laplace distribution on R with the scale parameter
λ. The Laplace mechanism [22] is a randomized algorithm for evaluating functions on
databases privately and efficiently.

Theorem 5.2 (Laplace mechanism [22]). Fix c, ε > 0. For all functions f : D →
R

t which are c-Lipschitz on the metric space (D, dD), the following algorithm (which
receives f as an oracle) is ε-differentially private:

Af
Lap(x) = f(x) + (Y1, . . . , Yt),

where Yi
i.i.d.∼ Lap(c/ε) for all i ∈ [t].

The Laplace mechanism adds noise proportional to a Lipschitz constant c of
the function f . Lipschitz filters provide an approach for releasing f privately and
efficiently when a distrusted client supplies c. When this mechanism is instantiated
with the Laplace mechanism, if the client’s claim about c is correct, this approach
results in the same noise as the Laplace mechanism itself.

5.3. An instantiation of the filter mechanism for histograms. Theo-
rem 1.11 applies to arbitrary metric spaces (D, dD). In this section, we instantiate
the filter mechanism with the Laplace mechanism and with the local Lipschitz filter
for functions from the hypergrid to real numbers, described in Theorem 1.10, and
analyze its performance.

Recall that each individual’s data is an element of an arbitrary domain U . Sup-
pose that U consists of k elements; that is, the individuals can have one of k types.
In this section, we model a database x as a histogram, i.e., a vector in R

k, where
the ith component represents the number of times the ith element of U occurs in
the database. Consider the set of databases which contain at most m individuals
of each type. The corresponding set of histograms is D = {0, . . . ,m}k. Recall that
two histograms are neighbors if they differ by 1 in exactly one of the components.
In this case, we can identify the metric space (D, dD) with the hypergrid Hm+1,k

(with the convention that vertices are vectors with entries in {0, . . . ,m} instead of
[m + 1]). Therefore, we can use our local Lipschitz filter from Theorem 1.10 in the
filter mechanism to release functions f : D → R. The performance of the resulting
algorithm is summarized in Corollary 5.3. We also bound the error of the mechanism.
Given a function f : D → R and a (randomized) mechanism A for evaluating f , let
E(f,A) = supx∈D E[|A(x) − f(x)|] be the error of the mechanism A in computing f .

Corollary 5.3 (filter mechanism for histograms). Fix c, ε > 0. For all functions
f : D → R, the filter mechanism of Theorem 1.11, instantiated with the Laplace
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mechanism and the local filter of Theorem 1.10, is ε-differentially private, and its
running time is bounded by (log(m + 1) + 1)k evaluations of f . In addition, for
c-Lipschitz functions f on D, the error of the mechanism, E(f,AFil), is O(c/ε).

Proof. Since two distinct databases x, x′ ∈ D = {0, . . . ,m}k are neighbors iff the
corresponding vertices in Hm+1,k are adjacent, it follows that the metric dD on D is
given by the shortest path metric on Hm+1,k. Therefore, using the local Lipschitz
filter from Theorem 1.10 in the filter mechanism of Theorem 1.11 instantiated with
the Laplace mechanism to release functions f : D → R, we get the first part of
the corollary. The claim about the running time follows from the running time of
the local Lipschitz filter. For the second part, observe that the output of the filter
mechanism for a c-Lipschitz function f on input x ∈ D is exactly f(x) + Lap(c/ε).
This is because the local filter of Theorem 1.11 has error probability 0. This implies
E(f,AFil) = supx∈D E[|Lap(c/ε)|] = c/ε, as required.

Finally, we compare our filter mechanism with other known ε-differentially private
mechanisms for releasing functions f : D → R, where D is a set of histograms over
a k-element universe with multiplicity m. We mentioned previously that, in general,
computing the least Lipschitz constant of a given function is undecidable. However,
for functions f over the hypergrid Hm+1,k, it can be done by an exhaustive search
over all edges of Hm+1,k in time dominated by O(mk) evaluations of f . Therefore,
our filter mechanism has the same error for an honest client and significantly better
running time than the direct application of the Laplace mechanism.

Another point of comparison is the noisy histogram approach for releasing f :
D → R privately. One can release the histogram x ∈ D using the Laplace mechanism
and let the client apply f to the noisy histogram herself. Let B(x) = f ◦Aidentity

Lap (x)
denote the resulting mechanism. In Theorem 1.12, we show that for some functions
f , this approach can result in expected error Ω(

√
k/ε), even when f is Lipschitz. This

is significantly worse than the expected error Θ(1/ε) resulting from applying the filter
mechanism to such a function.

Proof of Theorem 1.12. Given S ⊆ [k], let fS : D → R be the function which
on input x ∈ D = {0, . . . ,m}k outputs the sum of counts of each element in S:
fS(x) =

∑
i∈S xi. We show that for each S with |S| = Ω(k), the error of the noisy

histogram approach, E(fS ,B), is Ω(
√
k/ε). In contrast, for each S ⊆ [k], the error of

the filter mechanism, E(fS ,AFil), is O(1/ε), by Corollary 5.3 and the fact that fS is
Lipschitz for each S ⊆ [k].

On query fS and database x, the noisy histogram approach outputs

B(x) =
∑
i∈[r]

(xi + Yi),

where the Yi’s are independently and identically distributed random variables in
Lap(1/ε) and |S| = r. Denoting by Zr the random variable Y1 + · · · + Yr, we see
that E(fS ,B) = supx∈D E[|Zr|]. Let Bad denote the event |Zr| > √r/ε. Then,
E[|Zr|] ≥ E[|Zr|

∣∣Bad] · Pr[Bad] ≥ (
√
r/ε) · Pr[Bad]. Since r = Ω(k), it suffices to

show that Bad occurs with constant probability. Toward this end, let b = 1/ε. Now,
E[Z4

r ] = 12b4r(r + 1) ≤ 24b4r2 = 6(E[Z2
r ])

2. The inequality holds because (we may
assume) r is at least 1 while the last equality holds because E[Z2

r ] = 2b2r. Since,
Zr is symmetric about 0, using anticoncentration results of [28], restated below as
Claim 5.4, we get Pr[|Zr| > √r/ε] ≥ 1/36 (specifically, by substituting X = Zr,
θ = 0, t = 1/

√
2, and η = 1/

√
3 in the claim).

The following claim was used in the proof of Theorem 1.12.
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Claim 5.4 (Fact 3.3 and Proposition 3.7 of [28]). If a random variable X which
is symmetric about 0 satisfies E[X ] = 0 and E[x4] ≤ (1/η′)4E[x2]2, then for all θ ∈ R

and 0 < t < 1, Pr[|X − θ| > tE[X2]
1
2 ] ≥ η4(1 − t2)2, where η = min(η′, 1/

√
3).
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